Processing math: 100%

Math Equations

Saturday, July 26, 2014

The area of a triangle a, b, c

This week, I encountered the following problem in my textbook: Show that the area of a triangle ABC is given by s(sa)(sb)(sc), where s=(a+b+c)/2 is the semi-perimeter of the triangle. I want to share my solution because it shows how you can avoid time-consuming algebra by factoring instead of expanding.



A=A2A2=(bh2)2=b2h24h2={c2(ccosA)2a2(bccosA)2ccosA=c2+b2a22bh2=c2(c2+b2a22b)2=Π(c±c2+b2a22b)=Π2bc±(c2+b2a2)2bA2=(2bc+(c2+b2a2))(2bc(c2+b2a2))16=((b+c)2a2)(a2(bc)2)16=(b+c+a)(b+ca)(ab+c)(a+bc)2222=a+b+c2a+b+c2a2a+b+c2b2a+b+c2c2=s(sa)(sb)(sc)A=s(sa)(sb)(sc)