This week, I encountered the following problem in my textbook: Show that the area of a triangle ABC is given by √s(s−a)(s−b)(s−c), where s=(a+b+c)/2 is the semi-perimeter of the triangle. I want to share my solution because it shows how you can avoid time-consuming algebra by factoring instead of expanding.
A=√A2A2=(bh2)2=b2h24h2={c2−(ccosA)2a2−(b−ccosA)2ccosA=c2+b2−a22bh2=c2−(c2+b2−a22b)2=Π(c±c2+b2−a22b)=Π2bc±(c2+b2−a2)2bA2=(2bc+(c2+b2−a2))(2bc−(c2+b2−a2))16=((b+c)2−a2)(a2−(b−c)2)16=(b+c+a)(b+c−a)(a−b+c)(a+b−c)2⋅2⋅2⋅2=a+b+c2⋅a+b+c−2a2⋅a+b+c−2b2⋅a+b+c−2c2=s(s−a)(s−b)(s−c)A=√s(s−a)(s−b)(s−c)