By an extremely rational cubic polynomial, I mean a cubic polynomial \(p\) such that both \(p\) and \(p'\) are products of rational linear factors. A parametrization will now be derived.
Seek to satisfy \(p=(a+x)(b+x)(c+x),\ p'=3(d+x)(e+x)\) as polynomials.
\begin{align*}
0=p'(-e)&=ab+ac+bc-2(a+b+c)e+3e^2 \\
(3e-a-b-c)^2&=(a+b+c)^2-3(ab+ac+bc) \\
&=a^2+b^2+c^2-ab-ac-bc
\end{align*}We thus need to parametrize triples \((a,b,c)\) such that the right-hand side is a square.
By the cubic number system, I mean triples \((a,b,c)\) with the following operations.
\begin{align*}
(a,b,c)+(d,e,f)&\equiv(a+d,b+e,c+f) \\
(a,b,c)(d,e,f)&\equiv(ad+bf+ce,ae+bd+cf,af+be+cd) \\
Q(a,b,c)&\equiv a^2+b^2+c^2-ab-ac-bc
\end{align*}This system is a close sibling of the usual complex number system. Its relevance to us is in the last definition. It is the expression we want to make into a square. Verify the identity \(Q(zw)=Q(z)Q(w)\) to realize that our task can be fulfilled by setting \((a,b,c)\equiv(u,v,w)^2\). Normally, one would use fractions \(a,b,c,u,v,w\) in this number system, but we can just as well use complex parameters \(u,v,w\).
Here is the parametrization.
\begin{align*}
p&=(a+x)(b+x)(c+x),\quad p'=3(d+x)(e+x),\quad p''=6(f+x) \\
a&=u^2+2vw,\quad b=w^2+2uv,\quad c=v^2+2uw\\
d,e&=\frac13((u+v+w)^2\pm Q(u,v,w)),\quad f=\frac13(u+v+w)^2\end{align*}
Here is an example.
\begin{align*}
(u,v,w)&=(1,2,7) \\
(a,b,c)&=(1^2+2\times 2\times 7,\ 7^2+2\times 1\times 2,\ 2^2+2\times 1\times 7)=(29,53,18) \\
p&=(29+x)(53+x)(18+x)=27666+3013x+100x^2+x^3 \\
Q(u,v,w)&=1^2+2^2+7^2-1\times 2-1\times 7-2\times 7=31 \\
Q(a,b,c)&=29\times 29+53\times 53+18\times 18-29\times 53-29\times 18-53\times 18=961 \\
d,e&=\frac13({10}^2\pm 31)=\frac{131}3,23\\
p'&=3(\frac{131}3+x)(23+x)=(131+3x)(69+x)=3013+200x+3x^2\\
f&=\frac{100}3,\quad p''=6(\frac{100}3+x)=200+6x
\end{align*}
An example involving complex parameters \(u,v,w\) is best given visually and interactively.